Ancient DNA reveals more extensive Neolithic back migrations to Africa from Eurasia

Sequenced genome of 4,500-year-old Ethiopian male provides genetic baseline for researchers

Modern humans are generally accepted to have originated in Africa, and the genomes of native Africans is therefore of great importance in reconstructing early migrations as our species dispersed around the world as it provides a baseline against which later events can be viewed. A problem for geneticists is the back migrations from Europe and Southwest Asia that have occurred within historical times, which act as a confounding factor when working with genetic data from present-day populations.

One way by which the problem could be solved is to obtain ancient DNA from prehistoric human remains, but this has proved difficult with only mitochondrial DNA being obtained up until now. However, in 2012, archaeologists excavated the burial of an adult male in Mota Cave, a riverside cave discovered the year before in the highlands of southwestern Ethiopia. Radiocarbon remains established that the remains were 4,500 years old, predating Eurasian migrations and the dispersal of Bantu farmers which spread agriculture across much of sub-Saharan Africa.

Conditions in the cave favoured the survival of ‘Mota’s’ DNA and it proved possible to sequence his genome. It was found that he was closely related to present-day Ethiopian populations, and in particular to the Ari, a group of Omotic speakers from southern Ethiopia, located to the west of the highland region where Mota lived. This was unsurprising and confirmed the view that there had been population continuity in this relatively isolated region over the last 4,500 years.

The researchers then searched for the source of the later Eurasian admixture by assuming that the present-day Ara genome is a genetic mix of Mota plus the source. It was found that the closest match was with Neolithic LBK farmers from Stuttgart and with present-day Sardinians. The latter are known to be the closest contemporary match to early Eurasian Neolithic farmers. The implication is that the genetic backflow into Africa came from the same source as the Neolithic expansion into Europe from Anatolia. These farmers were presumably responsible for the archaeologically-attested arrival of wheat, barley and other domesticated Southwest Asian crops in Africa around 3,000 years ago.

The next step was to use Mota as an African genetic baseline and the Neolithic LBK as the source of the Eurasian component to estimate the magnitude and geographic extent of historical migrations, without having to use present-day populations. It was found that the Eurasian genetic backflow was substantially higher than previously believed, with an additional 4 to 7 percent of the genome of most African populations tracing back to a Eurasian source. The geographical impact was also far greater than previous estimates suggest, extending all the way to West and South Africa. Even the Yoruba and Mbuti, often used as baselines in genetic studies, were found to have a significant Eurasian component, albeit less than in East Africa.

The Mota data has thus proved to be extremely informative about Neolithic migrations and obtaining even earlier African genomes would be highly desirable. Unfortunately, the African climate does not favour the preservation of DNA, but it is to be hoped that as sequencing techniques improve more ancient African genomes will become available.

Reference:

Llorente, M. et al., Ancient Ethiopian genome reveals extensive Eurasian admixture throughout the African continent. Science 350 (6262), 820-822 (2015).

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s